Fighting infections and resistances

Press release / 4.12.2019

Winter is influenza season. In the northern hemisphere, cases of this infectious disease peak between November and March, and fatalities are not uncommon. Influenza vaccines can protect against the illness, but they aren’t always effective. According to the Robert Koch Institute, the vaccines for 2018/2019 were only about 20 percent effective. In the iCAIR® project, Fraunhofer researchers are collaborating with partners to develop new, urgently needed agents against influenza, as well as against other infectious diseases that are gaining ground worldwide. What is particularly interesting here is that the research team at the Fraunhofer Institute for Toxicology and Experimental Medicine ITEM can test the anti-infective agents in vital human lung slices.

The lung slices the researchers use to study infections in human tissue are only about 500 μm thick.
© Fraunhofer ITEM, Ralf Mohr
The lung slices the researchers use to study infections in human tissue are only about 500 μm thick.
To prove the efficacy of new active substances, Fraunhofer researchers also use vital human lung slices, known as precision-cut lung slices (blue), which can be infected with influenza viruses (red) as shown here.
© Fraunhofer ITEM, Olga Danov
To prove the efficacy of new active substances, Fraunhofer researchers also use vital human lung slices, known as precision-cut lung slices (blue), which can be infected with influenza viruses (red) as shown here.

In the project Fraunhofer iCAIRTM, the Fraunhofer International Consortium for Anti-Infective Research, scientists of the Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Australia's Institute for Glycomics (IfG) of Griffith University, Queensland, and the Hannover Medical School have teamed up to explore novel anti-infective therapeutic concepts. They identify therapeutic targets, develop compounds acting on these targets, and evaluate the efficacy of these drug candidates in special test systems such as PCLS – lung slices created from resected human lung tissue. During this year’s International Conference of the American Thoracic Society (ATS) in Dallas, TX (USA), the researchers showed that this test system can also be used for efficacy testing of novel anti-influenza drugs ((link to Olga’s ATS abstract)). They demonstrated that zanamivir, an already approved neuraminidase inhibitor developed by the Australian researchers, has the same antiviral effect in human PCLS infected with influenza virus ex vivo as in the intact human organism. Human PCLS can thus be used for preclinical efficacy testing of novel antiviral drugs in the future. The Fraunhofer scientists are currently testing new active agents developed at IfG in the PCLS model.

The overall aim of the scientists in the project Fraunhofer iCAIRTM is to overcome one of the biggest obstacles to developing new drugs: the gap in the drug development chain that arises between the discovery of new, potentially beneficial substances – often by universities or small companies – and the clinical development up to approval of a new drug, carried out by pharmaceutical companies. Once a drug candidate has been identified, it first has to undergo preclinical testing in relevant and predictive test systems, before it can advance to the stage of clinical testing. Fraunhofer iCAIRTM, with its broad interdisciplinary expertise ranging from basic research to preclinical testing, aims to bridge this gap in the drug development process and to help meet the urgent need for new anti-infective drugs.

The aims, possibilities and services offered by Fraunhofer iCAIRTM will also be presented at the Fraunhofer booth in the German Pavillon at this year’s BIO International Convention, the world's largest biotechnology trade fair, taking place in Philadelphia, PA (USA) from June 3 to 6.