The common chronic obstructive pulmonary disease (COPD) is characterized by progressive destruction of the lung parenchyma. More than 200 million people worldwide are affected by COPD. Cigarette smoke has been shown to be majorly responsible for COPD pathogenesis. Main features of COPD can be displayed ex vivo by using fresh lung tissue, so-called precision-cut lung slices (PCLS). PCLS contain epithelial cells, fibroblasts, smooth muscle cells, nerve fibers, and even immune cells such as antigen-presenting cells and T-cells. The tissue is fully viable. Cells in the tissue interact with each other, thereby reflecting the highly specialized function of the lung.
We use lung tissue of laboratory animals and human donors. The tissue is exposed ex vivo to cigarette smoke and cigarette smoke condensate using an air-liquid culture. The PCLS are subsequently examined for immune responses, changes in cellular phenotype, and respiratory toxicity. Features of COPD can thus be investigated – using tissue of different species including human. We found the tissue response to be highly comparable with the in-vivo response, and it can be used for prediction of organ responses.