RNA kann in vielen Varianten im Körper vorkommen. Am bekanntesten sind die messenger RNAs (mRNAs). Sie tragen in ihrer Struktur einen Code, der als Bauplan für Proteine dient. So codieren zum Beispiel die mRNAs in den Corona-Impfstoffen für Proteine von SARS-CoV-2. Neben den mRNAs gibt es im Körper aber eine Vielzahl von RNAs, die nicht für Proteine codieren. Viele Jahre hielt man diese RNA für Abbauprodukte längerer RNA – also für genetischen Müll. »Wir waren vor 15 Jahren eine der ersten Gruppen weltweit, die untersucht haben, ob die nichtcodierenden RNAs wirklich Müll sind. Dabei haben wir herausgefunden, dass diese RNA-Moleküle in den Zellen wichtige Steuerungsaufgaben übernehmen«, berichtet Prof. Thomas Thum, der gleichzeitig das Institut für Molekulare und Translationale Therapiestrategien an der Medizinischen Hochschule Hannover leitet.
Thomas Thum konnte zeigen, dass nichtcodierende Mikro-RNAs an krankhaften Umbauprozessen im Herzgewebe beteiligt sind, so zum Beispiel die Mikro-RNA 21. Sie ist besonders häufig in Herzen, deren Bindegewebe verhärtet ist. Durch diesen Befund ergab sich die Möglichkeit für einen neuen Therapieansatz. Zusammen mit einem Kooperationspartner konstruierte Thum eine Anti-Mikro-RNA, die im Schlüssel-Schloss-Prinzip an die Mikro-RNA 21 bindet und sie damit neutralisiert. Das war der Durchbruch. Das Forschungsteam konnte zeigen, dass man durch gezielte Hemmung einer nichtcodierenden Mikro-RNA die Verhärtung von Herzgewebe verhindern kann. Diesen Befund patentierte die Arbeitsgruppe und publizierte ihn 2008 in der renommierten Fachzeitschrift Nature. Die Anti-Mikro-RNA 21 wird mittlerweile vom Pharmakonzern Sanofi in einer klinischen Phase-2-Studie bei Patienten mit Nierenfibrose getestet.